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PREFACE

As the feld of statistics has developed over the years, the role of matrix methods
has evolved from a tool through which statistical problems could be more conve-
niently expressed to an absolutely essential part in the development, understanding,
and use of the more complicated statistical analyses that have appeared in recent
years. As such, a background in matrix analysis has become a vital part of a graduate
education in statistics. Too often, the statistics graduate student gets his or her matrix
background in bits and pieces through various courses on topics such as regression
analysis, multivariate analysis, linear models, stochastic processes, and so on. An
alternative to this fragmented approach is an entire course devoted to matrix methods
useful in statistics. This text has been written with such a course in mind. It also could
be used as a text for an advanced undergraduate course with an unusually bright group
of students and should prove to be useful as a reference for both applied and research
statisticians.

Students beginning in a graduate program in statistics often have their previous
degrees in other felds, such as mathematics, and so initially their statistical back-
grounds may not be all that extensive. With this in mind, I have tried to make the
statistical topics presented as examples in this text as self-contained as possible.
This has been accomplished by including a section in the frst chapter which cov-
ers some basic statistical concepts and by having most of the statistical examples
deal with applications which are fairly simple to understand; for instance, many of
these examples involve least squares regression or applications that utilize the sim-
ple concepts of mean vectors and covariance matrices. Thus, an introductory statistics
course should provide the reader of this text with a suffcient background in statistics.
An additional prerequisite is an undergraduate course in matrices or linear algebra,
while a calculus background is necessary for some portions of the book, most notably,
Chapter 8.
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xii PREFACE

By selectively omitting some sections, all nine chapters of this book can be covered
in a one-semester course. For instance, in a course targeted at students who end their
educational careers with the masters degree, I typically omit Sections 2.10, 3.5, 3.7,
4.8, 5.4-5.7, and 8.6, along with a few other sections.

Anyone writing a book on a subject for which other texts have already been written
stands to beneft from these earlier works, and that certainly has been the case here.
The texts by Basilevsky (1983), Graybill (1983), Healy (1986), and Searle (1982), all
books on matrices for statistics, have helped me, in varying degrees, to formulate my
ideas on matrices. Graybill’s book has been particularly infuential, since this is the
book that I referred to extensively, frst as a graduate student, and then in the early
stages of my research career. Other texts which have proven to be quite helpful are
Horn and Johnson (1985, 1991), Magnus and Neudecker (1988), particularly in the
writing of Chapter 8, and Magnus (1988).

I wish to thank several anonymous reviewers who offered many very helpful
suggestions, and Mark Johnson for his support and encouragement throughout this
project. I am also grateful to the numerous students who have alerted me to various
mistakes and typos in earlier versions of this book. In spite of their help and my
diligent efforts at proofreading, undoubtedly some mistakes remain, and I would
appreciate being informed of any that are spotted.

Jim Schott

Orlando, Florida

PREFACE TO THE SECOND EDITION

The most notable change in the second edition is the addition of a chapter on
results regarding matrices partitioned into a 2 × 2 form. This new chapter, which
is Chapter 7, has the material on the determinant and inverse that was previously
given as a section in Chapter 7 of the frst edition. Along with the results on the
determinant and inverse of a partitioned matrix, I have added new material in this
chapter on the rank, generalized inverses, and eigenvalues of partitioned matrices.

The coverage of eigenvalues in Chapter 3 has also been expanded. Some additional
results such as Weyl’s Theorem have been included, and in so doing, the last section
of Chapter 3 of the frst edition has now been replaced by two sections.

Other smaller additions, including both theorems and examples, have been made
elsewhere throughout the book. Over 100 new exercises have been added to the prob-
lems sets.

The writing of a second edition of this book has also given me the opportunity
to correct mistakes in the frst edition. I would like to thank those readers who have
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PREFACE TO THE THIRD EDITION xiii

pointed out some of these errors as well as those that have offered suggestions for
improvement to the text.

Jim Schott

Orlando, Florida
September 2004

PREFACE TO THE THIRD EDITION

The third edition of this text maintains the same organization that was present in
the previous editions. The major changes involve the addition of new material. This
includes the following additions.

1. A new chapter, now Chapter 10, on inequalities has been added. Numerous
inequalities such as Cauchy-Schwarz, Hadamard, and Jensen’s, already appear
in the earlier editions, but there are many important ones that are missing, and
some of these are given in the new chapter. Highlighting this chapter is a fairly
substantial section on majorization and some of the inequalities that can be
developed from this concept.

2. A new section on oblique projections has been added to Chapter 2. The previous
editions only covered orthogonal projections.

3. A new section on antieigenvalues and antieigenvectors has been added to
Chapter 3.

Numerous other smaller additions have been made throughout the text. These
include some additional theorems, the proofs of some results that previously had
been given without proof, and some more examples involving statistical applica-
tions. Finally, more than 70 new problems have been added to the end-of-chapter
problem sets.

Jim Schott

Orlando, Florida
December 2015
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ABOUT THE COMPANION WEBSITE

This book is accompanied by a companion website:

www.wiley.com/go/Schott/MatrixAnalysis3e

The instructor’s website includes:

• A solutions manual with solutions to selected problems

The student’s website includes:

• A solutions manual with odd-numbered solutions to selected problems

http://www.wiley.com/go/Schott/MatrixAnalysis3e
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1
A REVIEW OF ELEMENTARY MATRIX
ALGEBRA

1.1 INTRODUCTION

In this chapter, we review some of the basic operations and fundamental properties
involved in matrix algebra. In most cases, properties will be stated without proof, but
in some cases, when instructive, proofs will be presented. We end the chapter with a
brief discussion of random variables and random vectors, expected values of random
variables, and some important distributions encountered elsewhere in the book.

1.2 DEFINITIONS AND NOTATION

Except when stated otherwise, a scalar such as α will represent a real number. A
matrix A of size m × n is the m × n rectangular array of scalars given by

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦ ,

and sometimes it is simply identifed as A = (aij). Sometimes it also will be conve-
nient to refer to the (i, j)th element of A, as (A)ij ; that is, aij = (A)ij . If m = n,

Matrix Analysis for Statistics, Third Edition. James R. Schott.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Schott/MatrixAnalysis3e
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2 A REVIEW OF ELEMENTARY MATRIX ALGEBRA

then A is called a square matrix of order m, whereas A is referred to as a rectangular
matrix when m �= n. An m × 1 matrix

a =

⎡
⎢⎢⎢⎣

a1
a2
...

am

⎤
⎥⎥⎥⎦

is called a column vector or simply a vector. The element ai is referred to as the ith
component of a. A 1 × n matrix is called a row vector. The ith row and jth column
of the matrix A will be denoted by (A)i· and (A)·j , respectively. We will usually use
capital letters to represent matrices and lowercase bold letters for vectors.

The diagonal elements of the m × m matrix A are a11, a22, . . . , amm. If all
other elements of A are equal to 0, A is called a diagonal matrix and can be
identifed as A = diag(a11, . . . , amm). If, in addition, aii = 1 for i = 1, . . . ,m
so that A = diag(1, . . . , 1), then the matrix A is called the identity matrix of
order m and will be written as A = Im or simply A = I if the order is obvious.
If A = diag(a11, . . . , amm) and b is a scalar, then we will use Ab to denote the
diagonal matrix diag(ab

11, . . . , ab
mm). For any m × m matrix A, DA will denote

the diagonal matrix with diagonal elements equal to those of A, and for any m × 1
vector a, Da denotes the diagonal matrix with diagonal elements equal to the
components of a; that is, DA = diag(a11, . . . , amm) and Da = diag(a1, . . . , am).

A triangular matrix is a square matrix that is either an upper triangular matrix or a
lower triangular matrix. An upper triangular matrix is one that has all of its elements
below the diagonal equal to 0, whereas a lower triangular matrix has all of its elements
above the diagonal equal to 0. A strictly upper triangular matrix is an upper triangular
matrix that has each of its diagonal elements equal to 0. A strictly lower triangular
matrix is defned similarly.

The ith column of the m × m identity matrix will be denoted by ei; that is, ei is
the m × 1 vector that has its ith component equal to 1 and all of its other components
equal to 0. When the value of m is not obvious, we will make it more explicit by
writing ei as ei,m. The m × m matrix whose only nonzero element is a 1 in the
(i, j)th position will be identifed as Eij .

The scalar zero is written 0, whereas a vector of zeros, called a null vector, will be
denoted by 0, and a matrix of zeros, called a null matrix, will be denoted by (0). The
m × 1 vector having each component equal to 1 will be denoted by 1m or simply 1
when the size of the vector is obvious.

1.3 MATRIX ADDITION AND MULTIPLICATION

The sum of two matrices A and B is defned if they have the same number of rows
and the same number of columns; in this case,

A + B = (aij + bij).
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THE TRANSPOSE 3

The product of a scalar α and a matrix A is

αA = Aα = (αaij).

The premultiplication of the matrix B by the matrix A is defned only if the number
of columns ofA equals the number of rows of B. Thus, ifA ism × p andB is p × n,
then C = AB will be the m × n matrix which has its (i, j)th element, cij , given by

cij = (A)i·(B)·j =
p�

k=1

aikbkj .

A similar defnition exists for BA, the postmultiplication of B by A, if the number
of columns of B equals the number of rows of A. When both products are defned,
we will not have, in general, AB = BA. If the matrix A is square, then the product
AA, or simply A2, is defned. In this case, if we have A2 = A, then A is said to be an
idempotent matrix.

The following basic properties of matrix addition and multiplication in Theorem
1.1 are easy to verify.

Theorem 1.1 Let α and β be scalars and A, B, and C be matrices. Then, when the
operations involved are defned, the following properties hold:

(a) A + B = B + A.
(b) (A + B) + C = A + (B + C).
(c) α(A + B) = αA + αB.
(d) (α + β)A = αA + βA.
(e) A − A = A + (−A) = (0).
(f) A(B + C) = AB + AC.
(g) (A + B)C = AC + BC.
(h) (AB)C = A(BC).

1.4 THE TRANSPOSE

The transpose of an m × n matrix A is the n × m matrix A� obtained by interchang-
ing the rows and columns of A. Thus, the (i, j)th element of A� is aji. If A is m × p
and B is p × n, then the (i, j)th element of (AB)� can be expressed as

((AB)�)ij = (AB)ji = (A)j·(B)·i =
p�

k=1

ajkbki

= (B�)i·(A
�)·j = (B�A�)ij .

Thus, evidently (AB)� = B�A�. This property alongwith some other results involving
the transpose are summarized in Theorem 1.2.
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Theorem 1.2 Let α and β be scalars andA andB be matrices. Then, when defned,
the following properties hold:

(a) (αA)� = αA�.

(b) (A�)� = A.

(c) (αA + βB)� = αA� + βB�.

(d) (AB)� = B�A�.

If A is m × m, that is, A is a square matrix, then A� is also m × m. In this case, if
A = A�, then A is called a symmetric matrix, whereas A is called a skew-symmetric
if A = −A�.

The transpose of a column vector is a row vector, and in some situations, we may
write a matrix as a column vector times a row vector. For instance, the matrix Eij

defned in Section 1.2 can be expressed as Eij = eie
�
j . More generally, ei,me�

j,n

yields an m × n matrix having 1, as its only nonzero element, in the (i, j)th position,
and if A is an m × n matrix, then

A =
m�

i=1

n�
j=1

aijei,me�
j,n.

1.5 THE TRACE

The trace is a function that is defned only on square matrices. If A is an m × m
matrix, then the trace of A, denoted by tr(A), is defned to be the sum of the diagonal
elements of A; that is,

tr(A) =
m�

i=1

aii.

Now if A is m × n and B is n × m, then AB is m × m and

tr(AB) =
m�
i=1

(AB)ii =
m�

i=1

(A)i·(B)·i =
m�

i=1

n�
j=1

aijbji

=
n�

j=1

m�
i=1

bjiaij =
n�

j=1

(B)j·(A)·j

=
n�

j=1

(BA)jj = tr(BA).

This property of the trace, along with some others, is summarized in Theorem 1.3.
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Theorem 1.3 Letα be a scalar andA andB bematrices. Then, when the appropriate
operations are defned, we have the following properties:

(a) tr(A�) = tr(A).
(b) tr(αA) = α tr(A).
(c) tr(A + B) = tr(A) + tr(B).
(d) tr(AB) = tr(BA).
(e) tr(A�A) = 0 if and only if A = (0).

1.6 THE DETERMINANT

The determinant is another function defned on square matrices. If A is an m × m
matrix, then its determinant, denoted by |A|, is given by

|A| =
�

(−1)f(i1, ... ,im)a1i1
a2i2

· · · amim

=
�

(−1)f(i1, ... ,im)ai11ai22 · · · aimm,

where the summation is taken over all permutations (i1, . . . , im) of the set of inte-
gers (1, . . . ,m), and the function f(i1, . . . , im) equals the number of transpositions
necessary to change (i1, . . . , im) to an increasing sequence of components, that is,
to (1, . . . ,m). A transposition is the interchange of two of the integers. Although f
is not unique, it is uniquely even or odd, so that |A| is uniquely defned. Note that the
determinant produces all products of m terms of the elements of the matrix A such
that exactly one element is selected from each row and each column of A.

Using the formula for the determinant, we fnd that |A| = a11 when m = 1. If A
is 2 × 2, we have

|A| = a11a22 − a12a21,

and when A is 3 × 3, we get

|A| = a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a12a21a33 − a13a22a31.

The following properties of the determinant in Theorem 1.4 are fairly straightfor-
ward to verify using the defnition of a determinant.

Theorem 1.4 If α is a scalar and A is an m × m matrix, then the following prop-
erties hold:

(a) |A�| = |A|.
(b) |αA| = αm|A|.
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(c) If A is a diagonal matrix, then |A| = a11 · · · amm =
	m

i=1 aii.

(d) If all elements of a row (or column) of A are zero, |A| = 0.
(e) The interchange of two rows (or columns) of A changes the sign of |A|.
(f) If all elements of a row (or column) of A are multiplied by α, then the deter-

minant is multiplied by α.

(g) The determinant of A is unchanged when a multiple of one row (or column) is
added to another row (or column).

(h) If two rows (or columns) of A are proportional to one another, |A| = 0.

An alternative expression for |A| can be given in terms of the cofactors of A.
The minor of the element aij , denoted by mij , is the determinant of the (m − 1) ×
(m − 1) matrix obtained after removing the ith row and jth column from A. The
corresponding cofactor of aij , denoted by Aij , is then given as Aij = (−1)i+jmij .

Theorem 1.5 For any i = 1, . . . ,m, the determinant of the m × m matrix A can
be obtained by expanding along the ith row,

|A| =
m�

j=1

aijAij , (1.1)

or expanding along the ith column,

|A| =
m�

j=1

ajiAji. (1.2)

Proof. We will just prove (1.1), as (1.2) can easily be obtained by applying (1.1) to
A�. We frst consider the result when i = 1. Clearly

|A| =
�

(−1)f(i1, ... ,im)a1i1
a2i2

· · · amim

= a11b11 + · · · + a1mb1m,

where
a1jb1j =

�
(−1)f(i1, ... ,im)a1i1

a2i2
· · · amim

,

and the summation is over all permutations for which i1 = j. Since (−1)f(j,i2, ... ,im)

= (−1)j−1(−1)f(i2, ... ,im), this implies that

b1j =
�

(−1)j−1(−1)f(i2, ... ,im)a2i2
· · · amim

,

where the summation is over all permutations (i2, . . . , im) of (1, . . . , j − 1, j +
1, . . . ,m). If C is the (m − 1) × (m − 1) matrix obtained from A by deleting its
1st row and jth column, then b1j can be written
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b1j = (−1)j−1
�

(−1)f(i1, ... ,im−1)c1i1
· · · cm−1im−1

= (−1)j−1|C|

= (−1)j−1m1j = (−1)1+jm1j = A1j ,

where the summation is over all permutations (i1, . . . , im−1) of (1, . . . ,m − 1) and
m1j is the minor of a1j . Thus,

|A| =
m�

j=1

a1jb1j =
m�

j=1

a1jA1j ,

as is required. To prove (1.1) when i > 1, let D be the m × m matrix for which
(D)1· = (A)i·, (D)j· = (A)j−1·, for j = 2, . . . , i, and (D)j· = (A)j· for j = i +
1, . . . ,m. Then Aij = (−1)i−1D1j , aij = d1j and |A| = (−1)i−1|D|. Thus, since
we have already established (1.1) when i = 1, we have

|A| = (−1)i−1|D| = (−1)i−1
m�

j=1

d1jD1j =
m�

j=1

aijAij ,

and so the proof is complete. �

Our next result indicates that if the cofactors of a row or column are matched with
the elements from a different row or column, the expansion reduces to 0.

Theorem 1.6 If A is an m × m matrix and k �= i, then

m�
j=1

aijAkj =
m�

j=1

ajiAjk = 0. (1.3)

Example 1.1 We will fnd the determinant of the 5 × 5 matrix given by

A =

⎡
⎢⎢⎢⎢⎣

2 1 2 1 1
0 0 3 0 0
0 0 2 2 0
0 0 1 1 1
0 1 2 2 1

⎤
⎥⎥⎥⎥⎦ .

Using the cofactor expansion formula on the frst column of A, we obtain

|A| = 2










0 3 0 0
0 2 2 0
0 1 1 1
1 2 2 1










,
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and then using the same expansion formula on the frst column of this 4 × 4 matrix,
we get

|A| = 2(−1)








3 0 0
2 2 0
1 1 1







 .

Because the determinant of the 3 × 3 matrix above is 6, we have

|A| = 2(−1)(6) = −12.

Consider the m × m matrix C whose columns are given by the vectors
c1, . . . , cm; that is, we can write C = (c1, . . . , cm). Suppose that, for some m × 1
vector b = (b1, . . . , bm)� and m × m matrix A = (a1, . . . ,am), we have

c1 = Ab =
m�
i=1

biai.

Then, if we fnd the determinant of C by expanding along the frst column of C, we
get

|C| =
m�

j=1

cj1Cj1 =
m�

j=1

�
m�

i=1

biaji

�
Cj1

=
m�

i=1

bi

⎛
⎝ m�

j=1

ajiCj1

⎞
⎠ =

m�
i=1

bi|(ai, c2, . . . , cm)|,

so that the determinant of C is a linear combination of m determinants. If B is an
m × mmatrix and we now defneC = AB, then by applying the previous derivation
on each column of C, we fnd that

|C| =







�

m�
i1=1

bi11ai1
, . . . ,

m�
im=1

bimmaim

�





=

m�
i1=1

· · ·
m�

im=1

bi11 · · · bimm|(ai1
, . . . ,aim

)|

=
�

bi11 · · · bimm|(ai1
, . . . ,aim

)|,

where this fnal sum is only over all permutations of (1, . . . ,m), because Theorem
1.4(h) implies that

|(ai1
, . . . ,aim

)| = 0

if ij = ik for any j �= k. Finally, reordering the columns in |(ai1
, . . . ,aim

)| and
using Theorem 1.4(e), we have
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|C| =
�

bi11 · · · bimm(−1)f(i1, ... ,im)|(a1, . . . ,am)| = |B||A|.

This very useful result is summarized in Theorem 1.7.

Theorem 1.7 If both A and B are square matrices of the same order, then

|AB| = |A||B|.

1.7 THE INVERSE

Anm × mmatrixA is said to be a nonsingular matrix if |A| �= 0 and a singular matrix
if |A| = 0. If A is nonsingular, a nonsingular matrix denoted by A−1 and called the
inverse of A exists, such that

AA−1 = A−1A = Im. (1.4)

This inverse is unique because, if B is another m × m matrix satisfying the inverse
formula (1.4) for A, then BA = Im, and so

B = BIm = BAA−1 = ImA−1 = A−1.

The following basic properties of the matrix inverse in Theorem 1.8 can be easily
verifed by using (1.4).

Theorem 1.8 If α is a nonzero scalar, and A and B are nonsingular m × m matri-
ces, then the following properties hold:

(a) (αA)−1 = α−1A−1.
(b) (A�)−1 = (A−1)�.
(c) (A−1)−1 = A.
(d) |A−1| = |A|−1.
(e) If A = diag(a11, . . . , amm), then A−1 = diag(a−1

11 , . . . , a−1
mm).

(f) If A = A�, then A−1 = (A−1)�.
(g) (AB)−1 = B−1A−1.

As with the determinant of A, the inverse of A can be expressed in terms of the
cofactors of A. Let A#, called the adjoint of A, be the transpose of the matrix of
cofactors of A; that is, the (i, j)th element of A# is Aji, the cofactor of aji. Then

AA# = A#A = diag(|A|, . . . , |A|) = |A|Im,

because (A)i·(A#)·i = (A#)i·(A)·i = |A| follows directly from (1.1) and (1.2), and
(A)i·(A#)·j = (A#)i·(A)·j = 0, for i �= j follows from (1.3). The equation above
then yields the relationship

A−1 = |A|−1A#
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when |A| �= 0. Thus, for instance, if A is a 2 × 2 nonsingular matrix, then

A−1 = |A|−1
�

a22 −a12
−a21 a11

�
.

Similarly when m = 3, we get A−1 = |A|−1A#, where

A# =

⎡
⎣ a22a33 − a23a32 −(a12a33 − a13a32) a12a23 − a13a22
−(a21a33 − a23a31) a11a33 − a13a31 −(a11a23 − a13a21)

a21a32 − a22a31 −(a11a32 − a12a31) a11a22 − a12a21

⎤
⎦ .

The relationship between the inverse of a matrix product and the product of the
inverses, given in Theorem 1.8(g), is a very useful property. Unfortunately, such a nice
relationship does not exist between the inverse of a sum and the sum of the inverses.
We do, however, have Theorem 1.9 which is sometimes useful.

Theorem 1.9 SupposeA andB are nonsingular matrices, withA beingm × m and
B being n × n. For any m × n matrix C and any n × m matrix D, it follows that if
A + CBD is nonsingular, then

(A + CBD)−1 = A−1 − A−1C(B−1 + DA−1C)−1DA−1.

Proof. The proof simply involves verifying that (A + CBD)(A + CBD)−1 = Im

for (A + CBD)−1 given above. We have

(A + CBD){A−1 − A−1C(B−1 + DA−1C)−1DA−1}

= Im − C(B−1 + DA−1C)−1DA−1 + CBDA−1

− CBDA−1C(B−1 + DA−1C)−1DA−1

= Im − C{(B−1 + DA−1C)−1 − B

+ BDA−1C(B−1 + DA−1C)−1}DA−1

= Im − C{B(B−1 + DA−1C)(B−1 + DA−1C)−1 − B}DA−1

= Im − C{B − B}DA−1 = Im,

and so the result follows. �

The expression given for (A + CBD)−1 in Theorem 1.9 involves the inverse of
the matrix B−1 + DA−1C. It can be shown (see Problem 7.12) that the conditions
of the theorem guarantee that this inverse exists. If m = n and C and D are identity
matrices, then we obtain Corollary 1.9.1 of Theorem 1.9.
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Corollary 1.9.1 Suppose thatA,B andA + B are allm × m nonsingular matrices.
Then

(A + B)−1 = A−1 − A−1(B−1 + A−1)−1A−1.

We obtain Corollary 1.9.2 of Theorem 1.9 when n = 1.

Corollary 1.9.2 Let A be an m × m nonsingular matrix. If c and d are both m × 1
vectors and A + cd� is nonsingular, then

(A + cd�)−1 = A−1 − A−1cd�A−1/(1 + d�A−1c).

Example 1.2 Theorem 1.9 can be particularly useful when m is larger than n and
the inverse of A is fairly easy to compute. For instance, suppose we have A = I5,

B =
�
1 1
1 2

�
, C =

⎡
⎢⎢⎢⎢⎣

1 0
2 1

−1 1
0 2
1 1

⎤
⎥⎥⎥⎥⎦ , D� =

⎡
⎢⎢⎢⎢⎣

1 −1
−1 2

0 1
1 0

−1 1

⎤
⎥⎥⎥⎥⎦ ,

from which we obtain

G = A + CBD =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 0
−1 6 4 3 1
−1 2 2 0 1
−2 6 4 3 2
−1 4 3 2 2

⎤
⎥⎥⎥⎥⎦ .

It is somewhat tedious to compute the inverse of this 5 × 5 matrix directly. However,
the calculations in Theorem 1.9 are fairly straightforward. Clearly, A−1 = I5 and

B−1 =
�

2 −1
−1 1

�
,

so that

(B−1 + DA−1C) =
�

2 −1
−1 1

�
+

�
−2 0

3 4

�
=

�
0 −1
2 5

�

and

(B−1 + DA−1C)−1 =
�
2.5 0.5
−1 0

�
.

Thus, we fnd that

G−1 = I5 − C(B−1 + DA−1C)−1D
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=

⎡
⎢⎢⎢⎢⎣
−1 1.5 −0.5 −2.5 2
−3 3 −1 −4 3

3 −2.5 1.5 3.5 −3
2 −2 0 3 −2

−1 0.5 −0.5 −1.5 2

⎤
⎥⎥⎥⎥⎦ .

1.8 PARTITIONED MATRICES

Occasionally we will fnd it useful to partition a given matrix into submatrices. For
instance, suppose A is m × n and the positive integers m1, m2, n1, n2 are such that
m = m1 + m2 and n = n1 + n2. Then one way of writing A as a partitioned matrix
is

A =
�
A11 A12
A21 A22

�
,

where A11 is m1 × n1, A12 is m1 × n2, A21 is m2 × n1, and A22 is m2 × n2. That
is, A11 is the matrix consisting of the frst m1 rows and n1 columns of A, A12 is the
matrix consisting of the frst m1 rows and last n2 columns of A, and so on. Matrix
operations can be expressed in terms of the submatrices of the partitioned matrix. For
example, suppose B is an n × p matrix partitioned as

B =
�
B11 B12
B21 B22

�
,

whereB11 isn1 × p1,B12 isn1 × p2,B21 isn2 × p1,B22 isn2 × p2, and p = p1 + p2.
Then the premultiplication of B by A can be expressed in partitioned form as

AB =
�
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

�
.

Matrices can be partitioned into submatrices in other ways besides this 2 × 2 par-
titioned form. For instance, we could partition only the columns of A, yielding the
expression

A =
�
A1 A2

�
,

where A1 is m × n1 and A2 is m × n2. A more general situation is one in which the
rows of A are partitioned into r groups and the columns of A are partitioned into c
groups so that A can be written as

A =

⎡
⎢⎢⎢⎣

A11 A12 · · · A1c

A21 A22 · · · A2c
...

...
...

Ar1 Ar2 · · · Arc

⎤
⎥⎥⎥⎦ ,




